
I N E L A S T I C E F F E C T S I N N U C L E O N - N U C L E O N S C A T T E R I N G B745 

andi£ approximated by a pole at "FT = 2m with residue 
equal to 50, which fits the one-pion-exchange amplitude 
approximately in the physical region. This result shows 
that even if the entire input amplitude were fitted by 
two poles at W+ and W-, with residues T+ and T_, 
respectively, the contribution from the anomalous 
threshold can at most amount to 3%. Hence, the initial 
assumption that its contribution is small is justified. 
The reason that ikf32 is small in this case is because the 
real parts of W± are exactly at threshold, and conse­
quently P2(W±) are very small, and so are G and K 
evaluated there. However, if the real parts of W± are 
large then the contribution from such complex singulari­
ties would also be large. Hence, the calculation carried 

1. INTRODUCTION 

RECENTLY some degree of understanding of the 
working of unitarity in 5-matrix theory1 has been 

developed, e.g., the way it evaluates discontinuities,2-6 

generates singularities,6'7 and enables analytic continu­
ations to be made onto unphysical sheets3-5,8>9 In this 
sort of work a large number of properties or ingredients 

* This paper is a revised version of an unpublished Cambridge 
preprint circulated in July 1963 under the title "Towards an Axio-
matisation of S-Matrix Theory." Compared with this the con­
clusions are restated more precisely. The work has been rearranged 
and more explanation given but no new results are included. 

f Permanent address: Churchill College, Cambridge, England. 
1 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin and Company, Inc., New York, 1961). 
2 D. I. Olive, Nuovo Cimento 26, 73 (1962). 
3 D . I. Olive, Nuovo Cimento 29, 326 (1963). 
4 D. I. Olive, Nuovo Cimento 28, 1318 (1963). 
5 J. Gunson (unpublished). 
6 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 25, 901 

(1962). 
7 H. P. Stapp, Phys. Rev. 125, 2139 (1962). 
8 J. Gunson and J. G. Taylor, Phys. Rev. 119, 112 (1960). 
9 D. Zwanziger, Phys. Rev. 131, %%% (1963). 

out by neglecting the complex singularities are actually 
realistic within the framework of our program. 
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have been used. Apart from the quantum and Lorentz 
assumptions these are: (1) unitarity, (2) connectedness 
structure,2,10 (3) maximal analyticity,1 (4) the ie pre­
scription (see Sec. 3), (5) Hermitian analyticity,2 (6) 
extended unitarity,3 (7) existence of unphysical region 
stable poles on physical sheets, (8) the existence of 
antiparticles, (9) the substitution law for crossed proc­
esses, (10) the TCP theorem, (11) special physical 
sheet properties, (12) properties of physical region 
poles,4,5 (13) connection between spin and statistics. 

Several of these ideas can be grouped together. (5), 
(6), and (7) can be thought of as unphysical versions of 
the unitarity equations for T-matrix elements, valid 
at energies below the physical threshold of the ampli­
tude concerned. The number of intermediate states 
included decreases with the energy so that (5) derives 
from the equation with no intermediate states and (7) 
from that with a single-particle intermediate state. 

10 H. P. Stapp, University of California Radiation Laboratory 
UCRL-10289, 1962 (unpublished). 

P H Y S I C A L R E V I E W V O L U M E 1 3 5 . N U M B E R 3B 10 A U G U S T 1964 

Exploration of S-Matrix Theory* 

DAVID I. OuvEf 

Department of Physics, Carnegie Institute of Technology, Pittsburgh, Pennsylvania 
(Received 5 August 1963; revised manuscript received 20 April 1964) 

The possibility of constructing an S-matrix theory from postulates concerning unitarity, analyticity, con­
nectedness, the ie prescription and the spin-statistics connection is explored. The existence and residues of 
the physical region poles are shown to follow from the connected unitarity equations. The validity of certain 
fundamental theorems known from field theory, Hermitian analyticity, extended unitarity, the existence of 
antiparticles, the substitution law for crossed processes and the TCP theorem is reduced, in simple cases, to 
the question of whether the S-matrix singularity structure permits specific distortions of certain paths. These 
distortions are shown to be possible in a "model" singularity structure consisting of the normal thresholds, 
and depend only upon simple properties of these singularities. It is explained that it is logically impossible to 
deduce the complete singularity structure without the results we are trying to prove. A suggested resolution 
of this difficulty is to set up a scheme of successive iterations in singularity structure to be justified by self-
consistency. Then our work is the first step in such a scheme. 
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(8), (9), and (10) will be referred to as the antiparticle 
theorems. 

A satisfactory theory could only use a few members 
of this rather long list as axioms. I t would be desirable 
that these axioms have a reasonably direct physical 
interpretation and that the theory would enable one 
to derive the remaining ingredients on the list and 
calculate the singularity structure. At present, the most 
attractive possibility is that of basing a theory only 
upon the physical unitarity relations and upon some sort 
of maximal analyticity postulate, in addition to the 
quantum and Lorentz assumptions. 

The purpose of the present paper is to investigate 
this possibility and in particular to understand what 
features of such a theory could enable us to derive the 
unphysical unitarity relations and the antiparticle 
theorems. Before discussing our methods we shall briefly 
try to review the achievement so far in understanding 
the structure of 5-matrix theory. 

In the original investigation Stapp7 studied the TCP 
theorem (10) and the connection between spin and 
statistics (13). He considered continuations in momen­
tum space and used a principle of physical connection 
to identify certain negative energy parts of momentum 
space with amplitudes involving antiparticles. The TCP 
theorem followed from an assumption concerning single-
valuedness on the physical sheet. We should like to 
understand the basis of these assumptions better. 

At the same time he and Polkinghorne6 showed that 
the unitarity equations generate a perturbation theory 
singularity structure11,12 out of the normal thresholds 
and poles of the 5 matrix. To start off with however, 
one can deduce only the existence of physical region 
normal thresholds and their discontinuities, and these 
authors had to assume, either explicitly or implicitly, 
ingredients (5), (6), (7), (8), and (9), i.e., the unphysical 
unitarity relations and the antiparticle theorems in 
addition to analyticity and unitarity. 

Recently, Gunson,5 in an outstanding paper, has 
proposed alternative methods. He considered continu­
ations in the space of invariants, realized the importance 
of connectedness (2) and physical region poles (12) and 
saw that the connection between particle and anti­
particle poles leads to the possibility of proving cross-
ing(9). 

By a plausible procedure of subtracting out singu­
larities from the unitarity equations he was able to 
enumerate and assign discontinuities to supposedly all 
the physical region singularities in the 3 —» 3 amplitude 
lying between the 3- and 4-particle energy thresholds. 
These results were incorporated in his analyticity postu­
late, and were justified by an appeal to unspecified con­
sistency requirements so that effectively he assumed (5) 
and (6), two of the unphysical unitarity relations. Also, 
he assumed (4), accepted Stapp's arguments concerning 

11L. D. Landau, Nucl. Phys. 13, 181 (1959). 
12 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 

(8) and (10), and deduced (7) from his bound-state 
postulate. This played an important role in his formula­
tion and stated that a certain two-particle normal 
threshold4 was absent from a certain three-particle un­
physical sheet. 

All these approaches make assumptions involving 
either the unphysical unitarity relations or the anti­
particle theorems or both and are therefore not im­
mediately applicable in view of the fact that it is these 
relations which we wish to deduce. We shall still have 
to supplement the analyticity and unitarity assump­
tions (1) and (3) with assumptions concerning con­
nectedness (2), the ie prescription for physical region 
normal thresholds (4), and the connection between 
spin and statistics. The first two of these seem physic­
ally acceptable and are implicit in all the previous form­
ulations. We have not investigated the third but under­
stand that a new 5-matrix theory derivation will 
shortly be available.13 

Our methods will resemble those of Gunson5 in ex­
ploiting the multiparticle aspects of the theory, con­
nectedness and physical region pole structures. I t is 
these very complications that enable us to do anything, 
whose sheer complexity at present prevents us from 
writing down our arguments in any but the simplest 
cases. 

We find two main conclusions: 
(A) The validity of the unphysical unitarity rela­

tions and the antiparticle theorems depends upon certain 
multiparticle features of the physical unitarity equa­
tions and upon certain plausible topological properties 
of the singularity structure which are satisfied in the 
case of a crude model of the 5-matrix singularity struc­
ture consisting only of normal thresholds. 

(B) Since one cannot deduce the complete singu­
larity structure of the 5 matrix from the physical uni­
tarity equations without using the theorems mentioned 
above, a vicious circle develops in the attempt to simul­
taneously deduce both the singularity structure and the 
fundamental theorems. We suggest that it may be 
possible to overcome this critical difficulty by proving 
that the singularities must possess some sort of hierar­
chical structure which will enable one to unravel the 
powerful consistency requirements of the theory. In 
this case we outline a program for generating the 
remaining singularities and completing our proof. 

In Sec. 2 we discuss the connectedness assumption 
(2), write down some useful connected multiboson 
unitarity equations in bubble notation and develop 
rules for translating these into equations relating the 
A functions, the 5-function-free parts of the 5-matrix 
elements. 

In Sec. 3 we discuss the application of the maximal 
analyticity postulate to the A amplitudes as functions 
of invariants and formulate the it prescription assump­
tion for the physical region normal thresholds. We ex-

H. P. Stapp (private communication). 
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plain why we shall henceforth ignore all singularities 
but normal thresholds and develop a way of under­
standing the overlapping normal threshold cut structure. 

In Sec. 4 we study physical region pole structures 
and deduce the equivalence of poles and particles and 
the form of the residues. In Sec. 5 we use the four-par­
ticle unitarity equations and a multipole structure to 
deduce hermitian analyticity for the 2 —> 2 amplitude 
and see that similar arguments would yield extended 
unitarity and corresponding results for multiparticle 
amplitudes. 

In Sec. 6 we repeat and extend Gunson's arguments 
to prove that antiparticles must exist, to derive the 
substitution law for crossed processes and to prove the 
TCP theorem. We see how to define a generalized 
physical sheet in terms of the newly found complete 
normal threshold structure. 

In the conclusion we discuss the suggestion that our 
work can be regarded as the first step of an iteration 
procedure which may construct a unique, consistent 
5-matrix theory. 

2. UNITARITY AND CONNECTEDNESS 

The physical processes to be described are particle 
scattering processes taking place in infinite time. There 
are supposed to exist asymptotic states in the infinite 
past or future describing systems of particles, each with 
a definite energy and momentum. The 5-matrix relates 
these states so that its elements are probability ampli­
tudes for the scattering processes. In saying that the 
asymptotic states and the S matrix itself are well 
defined we are supposing that the interparticle forces 
have a finite range so that asymptotically the particles 
behave like free particles at large spatial separations. 

We shall only consider spin 0 particles satisfying the 
Bose statistics. Then the asymptotic particle states can 
be set up by the usual annihilation-creation operator 
formalism. General considerations indicate that the 
normalization of a single-particle momentum eigenstate 
must be proportional to a three-dimensional 5 function. 
I t is convenient to choose a relativistic normalization, 
and in particular 

W > = 2/(2 , r ) 3S(p-p ' ) . (2.1) 

The creation operator for a multiparticle asymptotic 
state is chosen to be the product of creation operators 
for the individual states. The corresponding single and 
multiparticle phase-space integrals are, respectively, 

5 , = (2T)" 
• / 

^5+(> 2 +m 2 ) (2.2) 

5M(M...».= ( » ! ) - i n 5 , < (2.3) 

FIG. 1. The unitarity equations 
for certain 5-matrix elements valid 
just above their physical thresh­
olds. At higher energies the number 
of intermediate states included de­
pends upon the energy. Equations 
with S and S+ interchanged also 
hold. 

=©<$: = = 

it is unitary. 

StS=SSt= l . (2.4) 

These equations give information about the particle 
structure of the S matrix which can be made clearer 
by introducing a bubble notation. An S matrix element 
for the process a —•» b is to be represented by a bubble, 
with S written inside, and with the lines on the right-
hand side corresponding to particles in state a and 
those on the left, to those in b. The S matrix element 
for a one-particle process, the single-particle state 
normalization (2.1), is represented by a single line, and 
the ^-particle phase space integral (2.3) by n lines join­
ing two bubbles. Then the unitarity equations for two-, 
three-, and four-particle scattering, valid just above 
the physical thresholds take the form in Fig. l.13a 

These equations indicate that the S-matrix elements 
themselves must possess a part corresponding to the 
right-hand side of the equations, a part which physic­
ally expresses the possibility that none of the particles 
may interact because of the finite range forces. In fact, 
there must be more structure than this because in 
multiparticle processes certain subsets of incoming 
particles may not interact with each other even though 
the constituent particles of each subset interact amongst 
themselves. The resultant connectedness structure is 
expressed in bubble notation in Fig. 2. 

The importance of this structure in 5-matrix theory 
has been pointed out by several authors.2'5'10 I t is of 
course contained within the Feynman rules for the 
perturbative expansion of the S matrix and it is this 
which is largely responsible for our physical intuition. 

Having seen how it is understood physically we shall 
now regard the connectedness structure as a formal 
assumption which tells us how to subtract out the parts 
of the 5-matrix elements containing various energy-
momentum conservation 5 functions in order to obtain 
the connected part, consisting of an over-all energy-
momentum conservation b function times a 5-function-
free function which will be our candidate for analytic 
continuation. 

Functional methods provide the most concise mathe­
matical formulation of the connectedness structure. We 
define the functional H obtained from the operator 

in the case of n identical particles. 
We shall assume that the 5 matrix exists, and that 

13a Note added in proof. Due to an unfortunate oversight in this 
diagram the 2-particle term has been omitted from the second 
equation and the 2- and 3-particle terms from the third. This 
mistake is not carried on to subsequent work. 
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3^E = = + ̂  + 3jE 
— r©: _^-N 

FIG. 2. Bubble notation equations representing the connected­
ness structure of certain .S-matrix elements. The bubbles with a 
-f- denote the connected part of the 5-matrix bubble with corre­
sponding external lines. A summation over all possible diagrams 
with similar structure is understood. Corresponding equations 
hold for St-matrix elements. 

Hby 

CO 0 0 

# = E E (nlnil)~1Sn...VnSCLV..(lmJn..JVn 
n==0 ra=0 

X ( p r • -pn|i? |qi- • -qm>/qi- • -Jqm. 

By functional differentiation with respect to the "cur-
rents" / , thereby effectively pulling out states, one can 
verify that Eq. (2.5) correctly expresses the structure 
in Fig. 2. 

$=exp$e. (2.5) 

Expansions of this type have been quoted in field 
theory14 for the vacuum expectation values of time-
ordered products. There the integration is over space-
time, whereas here it is over phase space. 

I t is possible to obtain a closed form for the complete 
set of connected unitarity equations by taking the 
logarithm of the functional unitarity equations result­
ing from the insertion of (2.5) in (2.4). The functional 
differentiation process which yields the explicit con­
nected equations is. too clumsy to be of use. Instead it 
is easier to insert the connectedness expansion in Fig. 2 
for the relevant ^-matrix element into the equations 
in Fig. 1 and isolate the connected part. The remaining 
disconnected part automatically vanishes by lower 
order equations.6,10 In Fig. 3 we use the bubble notation 
to write down a few unitarity equations, valid for various 
amplitudes just above their physical energy thresholds. 
For simplicity we have chosen a single identical particle 
theory but none of our results are restricted by the 
symmetries introduced in this case. 

The terms on the right-hand side (r.h.s.) are preceded 
by a minus if the number of bubbles labeled with a 
minus is even. Similar equations hold with + and — 
interchange on the rhs and with appropriate sign adjust­
ments. The last term in Eq. (c) of Fig. 3 is interesting 
because it does not give rise to an ordinary normal 
threshold and would not occur if all the four particles 
involved were different and had suitable quantum 
numbers. 

The A matrix element defined symbolically by 

Sc= -i(2ic)*b(Pi-Pf)A (2.6) 

14 K. Symanzik, Hercegnovi Lectures on High Energy Physics 
(Yugoslav Atomic Energy Commission, 1961). 

is the obvious candidate for analytic continuation since 
it is 5-function free. Equation (2.5) demands a unique 
phase in 5, that which will eventually lead to the 
Hermitian analyticity property of A. The prescription 
for translating bubble equations into equations involv­
ing A functions can be found by substituting (2.6) into 
the rules above. A common factor which is the coeffi­
cient of A in (2.6) can be cancelled and the remaining 
energy-momentum conservation 8 functions integrated 
out by the introduction of loop integrations. The result 
is 

(1) for each + or — bubble, A± where 

Aab —Aab,Aab ~Aba , 

(2) for each internal line,—2x^*5+(g2+w2), 

(3) for each loop fi(2w)-±d% 

(4) for each r particle state joining two bubbles a 

factor (r!)"1. 

These precisely resemble the Cutkosky rules ob­
tained in perturbation theory,12 but do not yet have any 
discontinuity content. The fact that there is no over­
all factor justifies our choice of normalization in (2.1) 
and (2.6). 

3. ANALYTICITY 

3.1 Decomposition of Multiboson Amplitudes 
and the Analyticity Postulate 

The multiboson A -matrix elements are functions of 
real four-vectors and are invariant under proper ortho-
chronous Lorentz transformations, and so must be 
functions of the Lorentz scalars which can be formed out 
of the four-vectors. There are two possible types, inner 
products of four-vectors, Zij=pimpj, and determinants 
of four different four-vectors e(p). The latter, unlike 
the 2, change sign under spatial reversal, while, like the 
2, remaining invariant under complete reversal. By the 
rules of determinantal multiplication, any product of 
two such determinants is a polynomial function of the 
z so that all such determinants are proportional to each 

<•>-©>:©=©: C o , 

FIG. 3. Bubble notation equations (a), (b), and (c) representing 
the connected part of the unitarity equations valid for the 2 —> 2, 
3 —> 3 and 4 —» 4 amplitudes, respectively, at energies just above 
their physical thresholds. The bubbles with -f and — denote the 
matrix elements of Sc and — Sj, respectively, and n lines joining 
two bubbles the n particle phase space integral (2.3). The summa­
tion indicates that over all diagrams of a similar structure. The 
intermediate states to be included depend upon the values of the 
external momenta. 
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other with a rational function of z as coefficient. Be­
cause of these properties, the multiboson amplitude can 
be decomposed linearly into scalar and pseudoscalar 
parts: 

A(p) = As(z) + e(p)Ap(z), (3.1) 

where As and Ap are functions of inner product in­
variants z only. 

Given the variables appearing in (3.1) and the sign 
of the time-like component of one of the particle mo­
menta, which is, of course, fixed for the physical process 
in question, one can easily construct a set of corres­
ponding momenta and see that this set is unique to 
within a proper orthochronous Lorentz transformation. 
Thus, Eq. (3.1) completely exhibits the dependence of 
the physical A amplitude. In view of some deductions 
we make in Sec. 6 it is important to note that it is not 
in order to include a term involving the sign of the time­
like component of a vector which is the difference of 
sums of incoming and outgoing momenta because this 
quantity is determined by the variables already in­
cluded in (3.1) 

Our preliminary analyticity assumption is that the 
As and Ap functions can be analytically continued from 
the physical region meeting only those singularities 
required by the unitarity equations, and, in the case of 
APy additional possible poles at the zeros of e(p), i.e., 
part of the boundary of the physical region, behaving 
not worse than e(p)~2. We are forced to include the 
possibility of such kinematic poles because, if we did 
not, we would find that the pseudoscalar function Ap 

corresponding to a different choice of momenta in e(p) 
would have to possess such poles, and then our analy­
ticity assumption would be inconsistent in that it 
depended upon a special choice of e(p). 

We choose to consider functions of scalar inner 
product invariants rather than four-momenta because 
we wish to incorporate Lorentz invariance in a simple 
way, and not have to bother with Hall-Wightman 
theorems, and because the fundamental singularities, 
the normal thresholds, will appear in a simpler form. 
Also, awkward mass-shell conditions are avoided, but 
all this is at the expense of having nonlinear Gram 
determinant conditions15 expressing the dimensionality 
of momentum space, and unitarity integration hyper-
contours with complicated boundaries. 

Later we shall discuss how various singularities, 
normal thresholds and others, may enter the physical 
region. This eventuality makes it immediately neces­
sary to add an extra clause to our analyticity postulate 
to the general effect that the physical amplitude is the 
boundary value of an analytic function. Because of 
various complications introduced by the multiparticle 
features we shall have to state this in a different way. 
We imagine the real sections of the singularity hyper-

15 V. E. Asribekov, Zh. Eksperim. i Teor. Fiz. 42, 565 (1962) 
[English transl.: Soviet Phys.—JETP 15, 394 (1962)]. 

surfaces dividing the physical region into segments and 
express the assumption in terms of the properties of the 
physical region paths of analytic continuation which 
relate the physical amplitudes in different segments. 

The imaginary distortions necessary to enable a 
path of continuation to link the physical amplitude in 
two adjacent segments of the physical region need 
only be infinitesimal. The assignment of imaginary dis­
tortions must be such that any closed physical region 
path can be contracted to zero. 

The second requirement ensures that two different 
paths lying within a physical region and leading from 
the physical amplitude at a point A to the physical 
amplitude at a point B do indeed encounter the same 
single valued function. The requirement that a path 
could be distorted through an intersection of singu­
larity surfaces with linearly dependent normals (a pinch 
configuration)6 restricts the possible relative assignment 
of imaginary distortions to the singularities. It is even 
possible to imagine singularity configurations in which 
it cannot be satisfied. It is apparently a consistency 
requirement upon the theory, whose understanding 
would clarify the status of the analyticity assumption, 
that the unitarity equations cannot generate such 
configurations. 

Later when we discuss the normal thresholds we shall 
make more specific assumptions about the imaginary 
distortions. 

3.2 Nomenclature 

We shall call a combination of external lines of the 
amplitude for a given physical process a channel, and 
two channels whose lines are disjoint and exhaustive a 
reaction. This usage is wider than that conventional in 
nuclear theory since at present we can only associate a 
well-defined physical state with a channel composed 
of lines either all incoming or all outgoing, and since 
the only "reaction" describing a physical process is 
that composed of the incoming and outgoing channels. 
Later we shall see that all these "reactions" can be 
related to physical processes but at present we shall 
use the words in the rather loose sense that has become 
standard in the literature on S-matrix theory. 

An amplitude with n external lines has 2n~1—n— 1 
associated different reactions providing we exclude re­
actions with single-particle channels and do not dis­
tinguish the direction of the reaction. The channel 
invariant variable is the square of the energy in the 
given channel C 

^ = - ( E ± ^ - ) 2 , (3.2) 

where zkpi are the momenta of incoming and outgoing 
lines, respectively. By energy-momentum conservation 
this quantity is identical for each channel in a reaction. 

We shall consider the space of these 2n~1—n— 1 dif­
ferent channel invariants in preference to the Z's above. 
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Although the channel invariants are linearly related, the 
advantage is that it will be easier to discuss a specific 
normal threshold singularity in terms of the channel 
invariant in which it appears fixed. 

The channel invariants for a given process can be 
classified into four types which we shall refer to as 

(1) total energy, 
(2) subenergy (composed of lines either all incoming 

or all outgoing), 
(3) momentum transfer (composed of one incoming 

line and one outgoing line), 
(4) crossenergy (composed of both incoming and 

outgoing lines but not 3). 

In the physical region the momentum transfers 
cannot support real intermediate states whereas the 
cross energies can run from momentum-transfer-like 
values to energy-like values and are obviously the pre­
dominant type of variable in processes involving very 
many particles. 

We shall say that two reactions overlap when the 
channels from the different reactions always have ex­
ternal lines in common. Thus, the cross-energy reaction 
overlaps the energy reaction whereas the subenergy 
reaction does not. 

3.3 Normal Thresholds and Their 
it Prescriptions 

Without knowing anything about Hermitian ana-
lyticity, the statement that A~, denned in (2.7), is the 
opposite boundary of A+, one can deduce the existence 
of normal threshold singularities in any channel in­
variant that can support a real intermediate state whose 
threshold is within the physical region of the amplitude 
considered. As the channel invariant increases past the 
threshold, a new term enters the unitarity relation cor­
responding to the newly possible intermediate state. 
Examples of such terms are the terms with single-
particle intermediate states in cross energies Eqs. (b) 
and (c) of Fig. 3 and the thirteenth term drawn on the 
right-hand side of Eq. (c) of Fig. 3. More examples occur 
in the unitarity equations valid at higher energies. 

The unitarity equations also suggest the existence of 
further normal thresholds in the energy and subenergy 
variable occurring at the physical thresholds of these 
channels and at lower values. We cannot properly 
deduce the properties of these singularities until we 
have derived the unphysical unitarity equations operat­
ing in their vicinitiy. 

When the energy in, say, the 3—>3 amplitude 
approaches its physical threshold, the three-particle 
threshold, the inequalities imposed by the requirement 
that we consider points within the physical region cause 
the subenergies to simultaneously approach their physi­
cal thresholds, the two-particle thresholds. This sort of 
behavior does not apply to the normal thresholds within 
the physical region, and it is characteristic of these that 

it is possible to move across them one at a time while 
remaining in the physical region. 

The physical-region normal thresholds divide up the 
physical region into segments, and the question arises as 
to how the physical amplitudes in these segments are 
related analytically. Consider a special case. According 
to the idea of maximal analyticity the path in the ap­
propriate channel invariant plane connecting the two 
physical amplitudes on each side of the singularity 
ought to be distorted into either the upper or the lower 
half-planes, rather than wind round the singularity. We 
supplement our analyticity assumption by assuming 
that the +ie prescription in the correct invariant is 
appropriate for all the physical region normal thresholds 
in all amplitudes. Perturbation theory is the guide here 
but we have strong suspicions that the assumption can 
be removed. 

This formulation of the ie prescription shows that it 
has nothing to do with arrangements of cuts. Also, by 
associating an ie with a channel invariant only when it 
nears a normal threshold, we avoid the difficulties and 
ambiguities which arise in trying to reconcile the con­
straint equations, linear and Gram determinant with an 
ie associated with each energy variable. This is providing 
we allow the possibility that some variable may be 
temporarily depressed below the real axis when remote 
from a singularity. 

Since Aab and Aba contain the same singularities, 
Aab~=Aba* contains them also, but, because of the 
complex conjugation, follows the — ie prescription. 

Since different forms of physical unitarity equation 
hold on either side of a physical region normal thresh­
old it is possible to use methods established elsewhere3,5 

to evaluate the discontinuity across the corresponding 
cut as a unitarity type of integral involving the expected 
single intermediate state. We emphasize that it is not 
necessary to know about Hermitian analyticity in order 
to do this but only that the — amplitudes possess op­
posite ie prescriptions to the + amplitudes with respect 
to the same singularities. Thus, we know almost imme­
diately that unitarity equations are associated with dis­
continuities. A difficulty in the argument3 is that one 
must continue the unitarity equations and that this 
process may generate singularities of a new type.16'17 

We shall not derive or use such results except in the 
special case of single-particle thresholds when we shall 
obtain the pole residue. 

3.4 Normal Threshold Model 

Although, in principle, a systematic analysis of these 
other physical region singularities is possible at this 
stage, little is known about them yet, and we shall 
ignore them. This is not too serious in view of the fact 
that the sort of properties we would require of them 

16 R. E. Cutkosky, Rev. Mod. Phys. 33, 448 (1961). 
17 P. V. Landshoff, Phys. Letters 3, 116 (1962). 



E X P L O R A T I O N OF 5 - M A T R I X T H E O R Y B751 

seem to be assured by our analyticity postulate, and 
since we are forced to ignore another class of singulari­
ties for more fundamental reasons. 

Later on we shall see that we have to make arguments 
concerning certain unphysical regions lying on the real 
axis below the physical threshold in the various energy­
like variables. Amongst the singularities expected to 
lie in this region are ones corresponding to Landau 
diagrams with three-line vertices. At the present stage 
in the argument we cannot possibly deduce the exist­
ence of such singularities, far less their properties. As 
an example we mention the triangle diagram which 
sometimes causes an anomalous threshold in two-par­
ticle scattering amplitudes. According to our present 
point of view this is a very sophisticated singularity 
because, as was discussed by Polkinghorne,6 it is 
generated by the momentum transfer in the unitarity 
integral hypercontour striking a crossed reaction stable 
pole. But, as yet, we can neither deduce the existence 
of crossed reactions or of the stable poles in unphysical 
regions. Similarly we cannot deduce the existence of 
any singularities generated by normal thresholds in 
unphysical regions whether below physical thresholds in 
energy-like variables or in momentum transfer channels. 

Thus we cannot deduce the singularity structure 
without the fundamental theorems and we cannot de­
duce the fundamental theorems without the singularity 
structure. This vicious circle is a fundamental obstacle 
to the deductive approach to 5-matrix theory. Gunson's 
answer5 to this problem was to postulate a discontin­
uity scheme involving all the unphysical unitarities 
and to appeal to unspecified consistency requirements. 
This is unsatisfactory to our point of view because we 
wish at least to understand the nature of the consistency 
requirements and would prefer to see whether they can 
be unravelled so that the whole theory can be put on a 
deductive basis. 

The method we shall suggest, and whose details and 
logical status we shall discuss at greater length in the 
conclusion, is to set up a scheme of successive iterations 
in terms of the singularity structure of the .5 matrix. 
The singularity structure that can be deduced is used to 
derive the fundamental theorems within this "approxi­
mation" and then these theorems are used, within 
their "approximation" to generate further singularity 
structure and so on. 

In the following sections on the unphysical unitarity 
relations and the antiparticle theorems, but not in 
that concerning physical-region poles, we shall under­
stand that we ignore all singularities but normal thresh­
olds. At first we shall only be able to include the physi­
cal region ones but will find that eventually all of them 
can be taken into account. The motives for this rather 
crude simplification can be variously ascribed, accord­
ing to the taste of the reader, to either our inability to 
do better because of our present lack of understanding 
of the S-matrix singularity structure, our desire to 

present our methods in a simple context, or our belief 
that we are carrying out the first step in an iteration 
scheme which will eventually produce a consistent 
5-matrix theory. 

3.5 Overlapping Cuts and Independence 

First we must clarify the normal threshold structure 
that we do have. 

A complication arising in multiparticle amplitudes is 
the occurrence of overlapping normal cuts when several 
different channels can simultaneously support real inter­
mediate states while being related by the constraint 
equations.18 According to the linear and Gram determ­
inant relations there are only 3n—10 independent vari­
ables. Suppose we select an independent set and fix 
all but one w. As it varies along its real axis and en­
counters its own normal thresholds it causes the redun­
dant variables to vary similarly. The singularities aris­
ing when they strike their normal thresholds is reflected 
in the w plane as the overlapping cuts. The appropriate 
distortions for these depends upon the relevant con­
straint equations. Two apparently coincident singu­
larities can be separated by adding a suitable imaginary 
increment to one of the independent variables which is 
not itself at a normal threshold. 

Since we can pass over one normal threshold at a 
time we can encircle one at a time and we shall want 
to understand the relative structure of the normal 
thresholds in different channels, whether for example, 
paths encircling a w normal threshold and an overlap­
ping normal threshold commute. Looking at just one 
plane we cannot answer such questions but, if we choose 
a set of independent invariants including the two 
whose normal thresholds we are interested in, and choose 
values of invariants such that we can encircle either 
normal threshold without interference from other nor­
mal threshold in redundant channels,19 we see that 
paths encircling the two thresholds do commute since 
they are fixed singularities in independent variables. 

Translated back into the w plane the result is a 
nontrivial relation between the overlapping singu­
larities and the w singularities which we shall call 
"independence." I t will be mentioned later that this 
property can be shown to be consistent with the uni­
tarity equations in a nontrivial way. I t means that we 
can correctly represent the multiparticle normal thresh­
old structure by thinking of a direct product of planes, 
one for each channel invariant, in which our point of 
observation moves in each plane subject to the linear 
and Gram determinant relations. As yet, all we know 
about the structure of the individual planes is the exis­
tence of the physical region normal threshold singu­
larities. We cannot yet deduce the existence of normal 

18 P. V. Landshoff and S. B. Trieman, Nuovo Cimento 19, 1249 
(1961). 

19 Such interference does sometimes occur when we include further 
singularities and then our result is modified. 
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thresholds in the unphysical part of the energy and sub-
energy channels or in any part of the momentum trans­
fer channels. Although we cannot even deduce the 
existence of fixed normal thresholds in the unphysical 
regions reached by encircling the physical region normal 
threshold it follows from independence that we would 
find exactly the same overlapping cut structure. 

Later in the paper we shall be able to fill in our inde­
pendence picture by deducing these extra normal 
thresholds. The independence structure will enable us, 
in a convenient and unambiguous way, to denote the 
generalized unphysical sheets reached by encircling 
sequences of normal thresholds by these sequences 
themselves. This is the generalized path notation intro­
duced in a previous paper.4 

Because of the constraint conditions it may sometimes 
be impossible to add positive imaginary increments to 
a set of energy variables simultaneously and this means 
that it will not always be possible to move directly 
into the physical sheet, as defined later, from the 
physical region. 

3.6 A Theorem 

We conclude this section by mentioning an important 
result concerning the singularities of unitarity-like inte­
grals. If we consider a reaction R of a unitarity-like 
integral consisting of two bubbles joined by an inter­
mediate state in a reaction R', then, if, and only if, 
R and Rr overlap, in the sense above, the function as a 
whole possesses no normal threshold singularities in the 
reaction R. When the bubbles are given a perturbation 
theory structure, the result follows from the Cutkosky 
rule12 that, when looking for the Landau singularities of 
a perturbation theory discontinuity integral, one cannot 
contract the lines bearing 8 functions. An argument 
due to Polkinghorne6 indicates that such a result is 
the consequence of the unitarity-like structure of the 
integral rather than the detailed properties of the 
bubbles and we take this to be the case. The result is 
applicable to unitarity-like integrals and to discon­
tinuity integrals, which differ from the former in the 
assignment of boundary values. The argument could 
obviously be developed to obtain results concerning 
integrals with more structure. 

4. PHYSICAL REGION POLES 

4.1 Consistency 

According to the rules (2.7), multiparticle unitarity 
equations, e.g., Eqs. (b) and (c) of Fig. 3, possess terms 

FIG. 4. Equation (a) indicates the existence and residue of a 
physical region pole occurring in the 3 —> 3 + amplitude. Equa­
tion (b) indicates the corresponding pole and residue in the — 
amplitude. 

^S-^^+^« 

_±- - _z_ - __{_ to 

FIG. 5. These equations indicate the consequences of inserting 
the pole structures of Fig. 4 into the 3-particle unitarity equation, 
Eq. (b) of Fig. 3, and isolating the dominant pole terms. 

proportional to a single-particle mass-shell 8 function. 
These immediately suggests the existence of a single-
particle pole within the physical region at the point in 
question. This pole could be understood physically, 
in the case of three-particle scattering, for example, 
as due to the dominance of processes in which two of 
the particles scatter on each other, and then one of 
these particles scatters again on the third incident 
particle. Diagrammatically such a process could be 
represented by Eq. (a) in Fig. 4. 

The internal line represents a propagator function 
D+ containing the pole. This picture suggests that the 
residue to the pole is proportional to the product of 
two mass-shell 2 —> 2 amplitudes. 

We shall adopt this viewpoint, and show that it is 
consistent with the unitarity equation [Eq. (b) of 
Fig. 3 J and identifies the function D. This argument 
and the result [Eq. (a) in Fig. 4] were referred to in 
Ref. 4. We shall then argue that the pole is the.only per­
missible singularity at the point in question, and that 
the residue is uniquely determined. In addition, all such 
poles must correspond to particles. 

It follows that the complex conjugate amplitude for 
the inverse process possesses the pole given by Eq. (b) 
in Fig. 4 where the internal line labeled with a minus 
represents the complex conjugate of J9+. 

We pick out and equate the dominant parts of terms 
in Eq. (b) of Fig. 3 possessing the one-particle pole 
structure in question. Only the first two terms on the 
rhs and the terms included in the sums but not explicitly 
drawn, lack this. This rather obvious conclusion is a 
simple case of the theorem mentioned at the end of the 
previous section. We obtain, in bubble notation, Eq. 
(a) of Fig. 5. 

According to the rules (2.7) the crossed line bears 
— 2iri times a mass-shell 8 function. On using two-
particle unitarity Eq. (a) of Fig. 3 to simplify the first 
two terms on the right we obtain, on cancellation, 
Eq. (b) of Fig. 5. Cancelling the scattering amplitude 
factors Eq. (c) (Fig. 5) results, or, in terms of the D 
propagator function, 

D+(u)-D-(u) = -27ri8(m2~u) . 

Assuming D is analytic near the point concerned, and 
remembering that D~=D+* by definition the dominant 
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part of the solution is 

D+(u) = db (u-n^zhie)-1 (4.1) 

or any appropriate linear combination of the two. 
According to our ie assumption we shall adopt the 

+ie prescription for all singularities. We have shown 
that it is consistent to assume the behavior, in terms of 
A amplitudes 

4̂ 33^^-22^ 22 /^—m 2 +ie . (4.2) 

The particularly simple form of the denominator is 
a consequence of our normalization conventions (2.1) 
and (2.6). 

It would seem plausible that this sort of argument 
works in general and we shall assume this. Indeed, 
Stapp13 has succeeded in developing a generalized bubble 
notation which demonstrates this. 

4.2 Uniqueness 

We shall now show that this dominant behavior is 
unique. Suppose it were possible for the amplitude to 
have some other dominant behavior nearby, due, for 
example, to some other singularity superimposed upon 
the pole, or a pole with a different, possibly nonfactor-
izing residue. This must, according to our assumptions, 
possess a +ie prescription in the amplitude, and in the 
inverse amplitude (trivially so for identical particle 
processes) an so a — ie prescription in the complex con­
jugate inverse amplitude. Equation (a) (Fig. 2) is 
linear in the 3—>3 amplitude apart from the "inhomo-
geneous" last term. The difference amplitudes d± 

between the two kinds of behavior must satisfy the 
"homogeneous" equation (a) of Fig. 6. 

Two functions equal along part of the real axis, 
possessing singularities just off this region, but with 
opposite ie prescriptions can only both be regular. This 
conclusion is expressed in Eq. (b) (Fig. 6). 

This integral equation is invertible because the scat­
tering amplitude possesses no poles in its physical 
region, and in fact, satisfies the Fredholm condition,3 

and we see d+ itself must be regular. 
Thus, a pole with the residue [Eq. (a) (Fig. 4)] is 

the unique possibility. Also the existence of a pole with 
nonzero residue is only possible if there is a 8 function 
then present, as in Eq. (a) (Fig. 5), so that given a 
pole, there must be a corresponding particle in the 
completeness relation. 

4.3 Further Comments 

Later on we shall often want to continue pole terms 
like (4.2). Knowledge of the singularity structure of 
the complete amplitude enables us to continue the 
residue, providing we remain on the mass-shell section 
prescribed by putting the denominator of the pole term 
equal to zero, because singularities in the residue must 
appear in the complete amplitude (but not necessarily 

3©E - 3 g ^ = a g E - ^ r E la) 

3 ^ £ ( = - 5 © = ) = ĝular (b) 

FIG. 6. These are the equations satisfied by the difference d 
between two different possible dominant behaviors. 

vice versa). A sufficient condition for the residues of a 
given pole at two points to be continuations of each 
other is that there exists a path of analytic continua­
tion in the complete amplitude joining the two points 
and lying within the mass shell section. 

If we had investigated the factorization Eq. (a) 
(Fig. 4) at a higher energy, e.g., above the four-particle 
threshold, there would have been more terms in 
Eq. (b) (Fig. 3) and so Eq. (a) (Fig. 5). Instead of 
Eq. (a) (Fig. 3) we would have to use three-particle 
unitarity for the two-particle amplitude, and would 
then arrive at the same factorization Eq. (a) (Fig. 4). 
This is expected, because we could have continued 
Eq. (a) (Fig. 4) in the energy and subenergies to the 
higher energy region. The reason for the agreement is 
that we had already assumed that the ie prescription 
in the two-particle amplitude energy and the three-
particle amplitude subenergy for the three-particle 
threshold are identical, whereas we could have deduced 
this fact. This illustrates how the ie prescription must 
satisfy certain consistency requirements. 

In multiparticle amplitudes there also exist more 
complicated pole structures with several physical re­
gion poles and we must check that the residue f actorizes 
as expected. Assuming that we have justified all single-
pole factorizations by the methods just given, we can 
factorize the amplitude by considering one pole at a 
time, and so arrive at the expected answer. The fact 
that the result must be independent of the order chosen 
tells us that the ie prescription for a given pole must be 
the same in all amplitudes. Alternatively the whole 
factorization structure could be justified in one step by 
insertion into the appropriate unitarity equation and 
this is illustrated in Sec. 5.1. 

If one were to assume that all A matrix elements for 
processes involving more than a certain number of 
particles vanish, then all the lower ones must vanish 
also, because the lower ones must be factors in residues 
of the vanishing amplitudes. We mention this because 
an analogous conclusion has been reached in field 
theory.20 

5. THE UNPHYSICAL UNITARITY RELATIONS 

5.1 Preliminary 

We mentioned that the Hermitian analyticity and 
extended unitarity equations can, for two-particle 

20 O. W. Greenberg and A. L. Licht, J. Math. Phys. 4, 613 
(1963). 
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FIG. 7. This equation denotes the particular pole structure in 
the 4 —> 4 amplitude which is under consideration. It follows from 
this that a similar equation holds with each + replaced by a —. 

scattering amplitudes at least, be thought of as un-
physical versions of the unitarity equations for the A 
amplitudes in the sense that they operate at energies 
below the physical thresholds of the amplitudes con­
cerned and that the number of intermediate states to 
be included is determined by this energy, just as in 
the physical unitarity equations. In particular, when 
the energy is below the lowest threshold, the unphysical 
unitarity relation contains no intermediate states and 
simply equates the functions obtained by continuing 
the + and — amplitudes down the energy axis with + 
and — ie prescriptions, respectively. Thus, the original 
+ and — amplitudes are continuations of each other. 
In fact, opposite boundary values of the same function 
onto the energy axis and the result is called Hermitian 
analyticity. I t has been shown that this fundamental 
property of the A amplitudes, which means that uni­
tarity indeed evaluates the discontinuity, holds in field 
theory,2,21 and in multichannel potential theory, irre­
spective of whether any special invariance principles, 
such as time-reversal invariance, operate. "Real ana­
lyticity" is then a special case of Hermitian analyticity 
which is valid only when the amplitude happens to be 
symmetric. 

Hermitian analyticity is not necessarily a relativistic 
phenomenon (and so cannot depend upon the TCP 
theorem as was erroneously stated in2), but depends 
upon the Hermiticity of the Lagrangian or potential 
or else the reality of the energy spectrum. In iS-matrix 
theory it will appear to depend upon the corresponding 
properties, the unitarity of the S matrix and the reality 
of the stable particle masses and also upon the ie 
prescription for the physical region normal thresholds. 

We now propose to use pole factorizations to show 
that the unphysical unitarity equations are contained 
within the multiparticle unitarity equations. The only 
type of channel invariant which can take physical 
values above or below the lowest continuum threshold 
is the cross energy. Apparently the simplest case in 
which we can use physical region pole factorizations to 
isolate this structure is the four-particle unitarity equa­
tion [Eq. (c) of Fig. 3] , and the interesting term is that 
with a possible two-particle intermediate state in the 
cross energy. In the part of the physical region, just 
above the four-particle threshold, where this term does 
contribute, there is present the physical region pole 
structure shown in Fig. 7. To check this assertion we 
pick out from Eq. (c) (Fig. 3) those terms which, ac­
cording to the overlapping channel theorem mentioned 

21 M. A. Rashid and A. Syed, Nuovo Cimento 28, 107 (1963). 

at the end of Sec. 3, possess this structure (Fig. 7) and 
write the result as the equation in Fig. 8. Since the poles 
are in the physical region we are entitled to equate the 
pole terms found by inserting the structure in Fig. 1, 
and the corresponding factorization for the minus 
amplitude, and also Eqs. (a) and (b) of Fig. 4 to obtain, 
in the notation of Sec. 4, Eq. (a) (Fig. 9). We have 
numbered the corresponding terms in Fig. 8 and Eq. (a) 
of Fig. 9. 

Using two-particle unitarity [Eq. (a) of Fig. 3] to 
simplify terms [1] minus [3 ] to [l'~] and terms [ 2 ] 
minus [4 ] to [2 ' ] , we obtain Eq. (b) (Fig. 9). We now 
use Eq. (c) of Fig. 5 to simplify terms [1 ' ] minus [ 5 ] 
to [ 1 " ] and terms [2 ' ] minus [6 ] to [ 2 " ] and obtain 
Eq. (c) of Fig. 9. As a result of these manipulations only 
three terms remain, and these now have the outside 
bubbles and the internal lines as common factors which 
we can cancel off to obtain Eq. (d) shown in Fig. 9. 
This is precisely Eq. (a) of Fig. 3 and the result confirms 
the structure in Fig. 7. We shall omit the uniqueness 
argument corresponding to that in Sec. 4. 

5.2 Hermitian Analyticity 

The above analysis suggests that in order to obtain 
the Hermitian analyticity relation for the middle bubble 
in Fig. 7, we must consider the part of the four-particle 
amplitude physical region above the four-particle 
threshold when the term [7] in Fig. 8 does not contrib­
ute. This happens when the external momenta are so 
prescribed that, in terms of the labeling of Fig. 7, particle 
8 comes off with so much energy that the energy of the 
234 system cannot produce another two particles. At 
the same time, the terms [ 5 ] and [6[] in Fig. 8 cannot 
contribute, and this means that the pole structure 
(Fig. 7) is not present in this new part of the physical 
region. 

Let us call these two parts of the 4 —» 4 + and — 
amplitude physical, regions Ri± and R2

± (in an obvious 
notation), respectively. They differ in that the values 
taken by the crossenergy variables of interest 52348, 
5i56, and £348 are lower in R2 than in Ri and that the 
regions are separated by the 6*2348 two-particle normal 
threshold. We shall not assume that there is any path 
of continuation relating R2

+ and R2~, i.e., that the 4 —> 4 
amplitude itself obeys any sort of Hermitian analyticity 
relation. 

According to our analyticity postulate the — ampli­
tude can be continued from R2~ to Ri~ by a path within 
the physical region. Suppose we continued the whole 
unitarity equation valid in R2 so that the — amplitude 

[t] [2] [31 14] t5] (6) [7 ] 

FIG. 8. This equation consists of those terms in the four-particle 
unitarity equation [(c) of Fig. 3] possessing the pole structure 
shown in Fig. 7. The terms in the equation are numbered for future 
reference. 
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is continued along this path while the + amplitude 
follows a related path. For singularities not generated 
by the equation being continued, the it distortions in 
this related path are those appropriate to the — rather 
than the + amplitudes and so this path leads from 
R2

+ to a region Ri1 on an unphysical sheet. 
We know that the — amplitude possesses the physi­

cal region pole structure of the type in Fig. 7 in j£i~, 
but only know that the + amplitude possesses this 
structure in Ri+ but not necessarily in Ri\ The sufficient 
condition that it does, and that the residues in Ri1 and 
Ri+ are continuations of each other, is that there exists 
a path connecting Ri+ to R\l lying in the section of the 
4 —* 4 amplitude invariant space prescribed by the mass 
shell constraints 5*156 = ^348 = m2. We know that there is a 
path from Ri+ to Rx\ namely the physical region path 
from JRI+ to R2

+ followed by the path above from R2
+ 

to Ri% and the question is whether this path can be dis­
torted to lie within the mass-shell section. 

FIG. 10. Diagram representing the «S,
2348-joint ,5348, Siw plane of 

the + and — 4—>4 amplitudes. The vertical and horizontal 
lines are the single-particle pole and two-particle normal thresh­
olds, respectively. The broken parabolic arc represents the 
boundary of the physical region. The path with arrows is associ­
ated with the -f- amplitude and runs from Ri+ to R2

+ to Ri\ 
The large arrows indicate the deformation of this path to the mass 
shell section. 

en C2'] csj C6] 

FIG. 9. These equations indicate the consequences of inserting 
the pole structure in Fig. 7, the corresponding one with — 's and 
those in Fig. 4 into the relevant terms of the four-particle unitarity 
equation valid above the 52348 two-particle threshold, namely, the 
terms appearing in Fig. 8. 

We cannot answer this question in general since the 
4 —> 4 amplitude singularity structure is not yet under­
stood. In our "approximation" explained in Sec. 3, we 
retain only normal thresholds and the question is 
easily settled. The situation is represented diagram-
matically in Fig. 10. Since Sn$ and 5348 enter the prob­
lem symmetrically, we have simplified the picture by 
assigning a single axis to these variables. The known 
path from Ri+ to R2+ to R\l runs over the 6*2348 two-
particle normal threshold with a +ie distortion and 
returns with the opposite distortion, and can easily 
be distorted to lie in the mass shell section when it 
just loops the normal threshold. 

According to this distorted path the residue of the 
pole structure in R\l differs from that in i?i+ in that the 
middle bubble is evaluated in a region reached when its 
energy variable (S2348) encircles its two-particle thresh­
old in an anticlockwise direction. We shall denote this 

by placing an i in the middle bubble instead of a + . 
The unitarity equation valid in R2 has not changed its 
form in the continuation to JRI. We now know which 
terms of the equation must possess the pole structure in 
Rh namely terms [1 ] , [2 ] , [3 ] , and [4 ] in Fig. 8. Also 
we have found the residues corresponding to each term 
and can equate the pole terms, obtaining Eq. (a) shown 
in Fig. 11. This differs from Eq. (a) of Fig. 9 in that i 
replaces + on the middle bubble of the pole structure 
whenever it appears, the ie prescription on the poles 
lines is absent and terms [5 ] , [ 6 ] , and [ 7 ] are absent. 
By the same manipulation which lead to Eq. (b) of 
Fig. 9 we obtain Eq. (b) of Fig. 11 and hence Eq. (c) of 
Fig. 11 which states that the i and — amplitudes are 
equal. This is our desired Hermitian analyticity rela­
tion and states that if the + amplitude is continued 
along the "path of Hermitian analyticity" round the 
two-particle threshold in a counterclockwise direction 
then the — amplitude is obtained. 

The result implies that the two particle threshold is 
a singularity and with Eq. (a) of Fig. 3 gives its 
discontinuity. 

» 0 

(b) 

(c) 

FIG. 11. These indicate the consequences of inserting the pole 
structures discussed in the text into a continuation of the four-par­
ticle unitarity equation valid below the 52348 two-particle threshold. 
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5.3 Generalizations 

By studying more complicated versions of Eqs. (a) 
to (c) of Fig. 3 we could extend the analysis to inelastic 
two-particle scattering amplitudes. Then we could ob­
tain the extended unitarity equations, infer the exist­
ence of normal threshold singularities below the physical 
threshold, and see that the path of Hermitian analyticity 
connecting the physical Aab boundary value to the 
physical Aia* boundary value runs down the energy 
axis with a +ie prescription, encircles the lowest thresh­
old, and returns with a — ie prescription. In such cases 
it is known in perturbation theory that the path of 
Hermitian analyticity may be modified by the existence 
of anomalous thresholds. It is important that our 
method should be able to explain this possibility and, 
in fact, it can, but we shall not include this argument 
in the present paper.22 

Sheer algebraic complication precludes an analysis 
of higher unitarity equations to obtain corresponding 
results for multiparticle amplitudes. In principle it is 
possible to derive generalized unitarity formulas for 
multiparticle amplitudes. From these there would fol­
low, by methods of an established type,3 equations for 
the individual single variable discontinuities across the 
normal threshold singularities lying at or below the 
physical thresholds in the energy and subenergy vari­
ables. We shall not discuss the form or properties of 
these important formulas here.22 Nevertheless, we shall 
anticipate that in terms of the independence picture we 
can insert the newly found normal threshold singularities 
in the energy and subenergy planes and that the gener­
alized path of Hermitian analyticity consists of a product 
of paths of the type described above in the planes cor­
responding to energy-like variables. We also expect the 
scalar and pseudoscalar amplitudes appearing in Eq. 
(3.1) to be separately Hermitian analytic. 

A third sort of unphysical unitarity relation is that 
valid at a single particle threshold on the physical 
sheet of the 2 —»2 scattering amplitude, and it tells 
us that this amplitude possesses a pole on the physical 
sheet with residue the product of coupling constants 
corresponding to the three-line vertices. The term in 
Eq. (c) of Fig. 3 which could produce such a pole in 
the middle bubble of the pole structure in Fig. 7 is the 
fifth drawn on the right-hand side, but we cannot apply 
our method unless we know that the 2 —» 3 production 
amplitude possesses a similar pole in its momentum 
transfer variable. This is tantamount to what we are 
trying to prove. We mention an alternative approach 
to this unphysical unitarity relation in the next section. 

6. THE ANTIPARTICLE THEOREMS 

We shall argue that the necessity for the existence of 
antiparticles, the validity of the substitution law for 
crossed processes and the TCP theorem follow from our 

22 We hope to discuss this elsewhere. 

postulates within our normal threshold approximation. 
We shall use an argument due to Gunson5 who first 
suggested the derivation of the substitution law, and 
repeat it here because we wish to amplify it and because 
we feel he failed to realize its full significance when 
applied to the other points. He had accepted the argu­
ments of Stapp7 concerning the TCP theorem and this 
involved several assumptions which were unsatisfactory 
from our point of view. 

6.1 The Existence of Antiparticles 

According to relativistic kinematics, the energy of a 
particle is given in terms of its momentum by 

f=(tf+m*yi2m (6.1) 

Consideration of the negative root leads, via the hole 
theory,23 to the concept of antiparticle, but does not 
tell us that the antiparticle must, of necessity, exist 
in relativistic physics. It is the second quantization 
that forces a Lorentz invariant field operator to possess 
a negative energy part which creates states interpret-
able only as those of an antiparticle which carries 
physical energy momentum but quantum numbers 
opposite to those of the original particle. In the axio­
matic formulation, weak local commutativity does this,24 

and moreover, leads to the TCP theorem. Local com­
mutativity goes further, giving us forward tube ana­
lyticity in momentum space and the substitution law 
for crossed processes. In .S-matrix theory we cannot 
just assume that antiparticles exist by analogy, or 
because asymptotic fields are causal, but must find the 
corresponding principle that forces them upon us. 
Since, in field theory, the theorems on antiparticles 
follow from the "causal" assumptions, we would expect 
analyticity to be the corresponding operative assump­
tion in ^-matrix theory. We shall find that, in as far 
as we can yet understand the singularity structure of 
the S matrix, this is indeed so, and conclude that the 
experimental detection of antiparticles is, in a sense, a 
partial verification of the analyticity postulate. 

Assuming that our results on physical region poles 
can be reworked in more general theories, we see that 
there could occur the pole due to a certain particle in 
the 4—>4 amplitude with the residue indicated in 
Fig. 12(a). This pole occurs in what we shall refer to 
as the particle pole part of the physical region and is 
fixed in the appropriate cross energy variable. If the 
antiparticle existed, it would give rise to essentially the 
same pole in another part of the same physical region, 
the antiparticle part, with the residue indicated by 
Fig. 12(b). As we see from the diagrams the flux of 

23 P. A. M. Dirac, Quantum Mechanics (Oxford University 
Press, New York, 1958). 

24 S. Weinberg (private communication) has pointed out that 
the requirement that the field theory give rise to a Lorentz invari­
ant 5 matrix implies the existence of antiparticles. It also implies 
local commutativity and hence analyticity. 
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FIG. 12. The particle and antiparticle poles in a certain 4 —• 4 
amplitude are represented in (a) and (b), respectively. The 
straight, wavy, and dashed lines indicate particles with different 
quantum numbers. The single arrow represents the flow of quan­
tum number and the double arrow the flow of positive energy. 

positive energy is reversed with respect to the flux 
of quantum number in 12(b) as compared with 12(a), 
so that the antiparticle is a manifestation of the negative 
root in (6.1). 

The question is whether the existence of the pole 
in the antiparticle region can be deduced from the 
existence of the pole in the particle region. There is 
no continuous transition from particle to antiparticle, 
that is, the path lying along the pole line passes through 
an unphysical region of the complete amplitude. Since 
poles persist in functions of many complex variables, 
the pole must persist in the antiparticle region, but not 
necessarily on the correct sheet, that unique sheet 
reached by a path within the physical region, which is 
distorted according to the physical region ie prescription. 

If it is possible to distort this physical region path 
so that it lies on the mass shell section then the pole 
certainly must exist in the antiparticle region and its 
residue must be a continuation of the residue of the 
particle pole. In general we have no means of arguing 
that such a distortion through an unphysical region is 
possible, but within our normal threshold approximation 
the answer is simply found. 

The situation is represented diagrammatically in 
Fig. 13. 

The normal thresholds in reactions other than that 
with the pole cannot impede the distortion since the 
path just slides along them. The only conceivable diffi­
culty is that the path could encircle a normal threshold 
in the reaction with the pole. The ie prescription as­
sumption forbids this and since the path need only 
pass through values below the mass shell value in the 
pole invariant it need not even cross a normal threshold 
in this variable. 

We have shown in Sec. 4 that physical region poles 
must represent particles to be included in the complete­
ness relation, and this one in the antiparticle region 
must now represent the antiparticle of the original since 
it bears physical energy momentum but opposite quan­
tum numbers. This interpretation is confirmed by the 
possibility of forming multi-antiparticle states by exten­
sion of the argument. The antiparticles, therefore, 
must be included in the completeness relation, and 
antiparticle amplitudes must be defined satisfying 

systems of unitarity equations so that the analysis of 
the previous section is applicable. 

An interesting difference between this argument and 
the field theoretic one is that this necessarily depends 
upon a theory with interaction. Physically this is 
reasonable because in a universe consisting only of 
noninteracting particles, antiparticles could not be 
created. 

6.2 The Substitution Law for Crossed Processes 

Gunson has pointed out that if the residues of the 
poles in the particle and antiparticle regions are con­
tinuations of each other, then one might expect the 
individual factors to be related similarly so that the 
substitution law for crossed processes would result. 

But this argument is not quite correct, and what does 
follow is that, if we consider all factorizations due to 
these poles we can relate the continued amplitude 
Aab

c and the crossed amplitude Aab in the following 
way: 

Aabc=cxAab if particle crossed is initially incoming 
=or1Aab if particle crossed is 

initially outgoing. (6.2) 

a is a constant number depending only upon the par­
ticle crossed. We shall prove that it is a phase factor 
which can be taken as unity so that the crossed and 
continued amplitudes are indeed identical. 

We shall understand that a superscript placed on an 
amplitude denotes that that amplitude has been con­
tinued along a path designated by that symbol. Thus, 
c refers to the path to the crossed physical region and is 
obtained from the path in the larger amplitude con­
necting the particle and antiparticle regions by taking 
suitable projection onto the relevant sub space of vari­
ables. c denotes the complex conjugate path to c. 

In order to prove that a is a phase factor we first note 
that, if Aab

c and Aab have identical paths of Hermitian 
analyticity, then these amplitudes are related to the 
corresponding amplitudes for the inverse processes and 
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FIG. 13. u, the variable with the pole at m2 is plotted against a 
typical variable a. The broken arc represents the boundary of the 
physical region and the curved path with the arrows the physical 
region path running from the particle region to the antiparticle 
region. The large arrows indicate the deformation of this path to 
the mass-shell section. 
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FIG. 14. The plane represents one of those in our independence 
picture corresponding to a variable taking energy-like values which 
crosses into one also taking energy-like values, h represents the 
path of hermitian analyticity for the original amplitude, c the 
path of continuation to the crossed physical region, and e the com­
plex conjugate of this, h' is the path of Hermitian analyticity 
for the crossed amplitude. 

a restriction on a results. The paths of Hermitian 
analyticity of Aab and Aab

c are h! and hc and are defined 
by Aabh' = Aba* and hc = c-xM so that Aab

chc= (Aha
c)*> 

Supposing that the particle crossed is in state a, and 
comparing these equations with the relations (6.2) we 
find 

\a\*Aa*h'=Aai>h'. (6.3) 

According to our simplified picture of the singularity 
structure and the idea that generalized paths of Hermi­
tian analyticity are products of single-plane paths of 
Hermitian analyticity, we see that hc=hi', and so | a | = 1 
b y E q . (6.3) (see Fig. 14). 

This result can also be derived without such specific 
assumptions. According to (6.3) there are two different 
sheets of the crossed amplitude on which this function 
differs only by a positive real factor. This sort of struc­
ture seems unreasonable and would have to be the con­
sequence of an un-unitarity-like discontinuity formula. 
Assuming that such behavior is not permissible we 
deduce \a\=l,hc=hf. This last relation with the defini­
tion hc—c^hc implies that h, = c~1hc, an interesting 
general relation between paths relating different physi­
cal boundary values. 

We now argue that a is an arbitrary phase factor 
which we are at liberty to choose as unity, and so finally 
obtain the substitution law for crossed processes. If 
we select a particular type of particle in the theory, and 
modify the theory by multiplying each 5-matrix ele­
ment by eid each time it appears in an initial state and 
by e~iB each time it appears in a final state, then the 
equations of the modified theory, unitarity, and con­
nectedness are formally identical with the original ones. 

Such a transformation, really just a phase trans­
formation of the particle creation operators, can be 
carried out independently of the antiparticle and be 
used to alter the phase of a, and, in particular, make it 
unity. The reason that this complication of having a 
particle-antiparticle relative phase does not usually 
occur in field theory is that there a natural phase for 
particle momentum states exists, that in which the 
wave function is simply eipx with no extra factor. We 
shall take it that this phase is fixed for all particles 
so that the substitution law for crossed processes always 
holds. 

An extra step is necessary to obtain crossing for two 
particle amplitudes. Then two lines must be crossed 
simultaneously by considering a twin pole structure. 

6.3 The TCP Theorem 

The TCP conjugate of a given multiboson amplitude 
is constructed by "crossing" all incoming particles (or 
antiparticles) into outgoing antiparticles (or particles) 
bearing the same physical energy momentum, and 
treating all outgoing particles and antiparticles simi­
larly. In bubble notation this means that along a given 
external line, the outflow of energy momentum is 
reversed while the outflow of quantum number is 
preserved. The values of the corresponding channel 
invariants and determinants of four vectors are the 
same since both are unchanged by complete reversal. 

The TCP theorem states that an amplitude and its 
TCP conjugate are equal. Although this is contained 
within crossing, we shall obtain a picturesque direct proof 
by considering a four-pole structure in an 8 —> 8 ampli­
tude, as shown in Fig. 15(a). 

The complete 8—>8 amplitude is continued within 
its physical region to the part where the internal pole 
lines now correspond to antiparticles and where the 
invariants formed out of the momenta born by the 
internal lines assume their original values. This struc­
ture is illustrated in Fig. 15(b). 

According to the results on physical region poles in 
Sec. 4, the residues are just the products of amplitudes 
indicated by the diagrams. In particular, the factor 
corresponding to the middle bubble in Fig. 15(b) is 
the TCP conjugate of that occurring in Fig. 15(a). We 
also know, by an extension of previous arguments, that 
the total residues are continuations of each other, and 
that, by our choice of particle-antiparticle relative 
phase, the crossed production amplitudes are con­
tinuations of the uncrossed ones. I t follows that the 
TCP conjugate 2 —> 2 amplitude is a continuation of 
the original 2 -> 2 amplitude, the path of continuation 
CTCP being determined by the path joining the pole 

FIG. 15. Four-pole structures 
in an 8 —» 8 amplitude. In (a) 
the poles correspond to par­
ticles and in (b) to antipar­
ticles. The single arrows denote 
flow of quantum number and 
the double arrows the flow of 
positive energy. Pluses have 
been omitted on the bubbles 
and pole lines. 
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structures in Fig. 15 in the 8 —> 8 amplitude physical 
region. In order to return to its starting value in the 
space of channel invariants, as it does, the path CTCP 
must pass over any normal thresholds twice, and must 
be distorted the same way each time because of the 
physical region ie prescription in the 8—>8 amplitude. 
Thus, CTCP returns to the same point on the same 
sheet, and the TCP theorem follows, given our pre­
liminary understanding of the singularity structure of 
the S matrix. 

Since the determinants of four vectors are invariant 
under complete reversal they return to their original 
value in the continuation between particle and anti-
particle pole structures, and the argument is generaliz-

' able to multiboson amplitudes. Similarly, if spin-^ 
particles were included and a y-matrix formalism used, 
the same arguments would apply to the functions of 
invariants, and the spin part of the TCP theorem would 
be accounted for by the properties of the y matrices.2 

6.4 The Physical Sheet 

As we prove crossing we can deduce the existence of 
new singularities. In particular, the existence of normal 
thresholds in those momentum transfer channels of 
the uncrossed amplitude which cross into subenergies 
follows from the unitarity and extended unitarity 
equations valid in the crossed channel. Thus, with the 
observations of Sec. 5, we have deduced the existence 
of all the normal thresholds singularities for continuum 
states and can insert them into our independence 
picture. By Hermitian analyticity and independence, 
they appear in both the upper and lower limits onto the 
positive real axis in each of the 2n~1—n~ 1 channel 
invariant planes. 

Collecting our results on Hermitian analyticity, cross­
ing, and TCP, we see that 2(2n~1—n— 1) different 
boundary values of a single analytic function onto this 
singularity structure, describe 4(2W_1—n— 1) different n-
particle physical processes. In the independence picture 
the continuation between crossed physical regions is 
an appropriate movement along the real axis with a 
+ie prescription. 

The region which connects all these different physical 
boundary values is the product of cut planes and will 
be called the physical sheet. I ts structure is a conse­
quence of the original ie prescription for physical region 
normal thresholds. When we have found the further 
singularities, we expect this region to have analytic 
properties simpler than those of any comparable regions. 

By crossing the appropriate two lines in Fig. 4a we 
can deduce that A$z must possess a single-particle pole 
in the energy channel on the physical sheet as defined 
above. By considering the system of unitarity, or rather 
normal threshold discontinuity equations which link A 22 
to AM it is possible to deduce that A22 possesses a stable 
pole on its physical sheet also. Because we must allow 
for the possible occurrence of multiple zeros and poles 

in the various amplitudes appearing the argument be­
comes too complicated for inclusion in the present 
paper.22 

I t seems surprising that such an apparently simple re­
sult is the consequence of such a roundabout argument, 
but in view of the comments at the end of Sec. 5 we 
have seen no alternative approach. Gunson5 has demon­
strated that it is also an extraordinarily powerful result. 

All the derivations given in this paper can be repeated 
in the presence of all the normal threshold singularities. 
Thus, we have obtained a scheme in which all the normal 
threshold singularities are included but everything else 
ignored, and in which all the fundamental theorems 
can be derived. For this scheme to mean anything it 
must, at least, be self-consistent. Examples of consis­
tency requirements concern the behavior of the indi­
vidual normal threshold discontinuity formulas men­
tioned in Sec. 5, with respect to independence and 
crossing, but we shall not discuss here how they are 
indeed satisfied.22 

7. DISCUSSION 

Multiparticle features of the physical unitarity equa­
tions have enabled us to develop methods which relate 
the validity of the unphysical unitarity relations and 
the antiparticle theorems to properties of the ^-matrix 
singularity structure. In each case the condition reduced 
to a question of distorting a certain well defined path 
in a certain way. We were unable to verify this in general 
because we do not yet know enough about the singu­
larities involved. We considered a "model" or "approxi­
mation" taking only normal thresholds into account 
and found that the distortion was permitted and that 
this depended only on rather weak properties of the 
singularities such as independence and ie prescriptions 
and not upon any detailed topological properties of 
the normal thresholds (which are only known for two-
particle thresholds3). 

I t is possible to imagine unfavorable configurations, 
but we are encouraged by the fact that these are for­
bidden in physical regions, at least, by the part of the 
analyticity postulate which permits arbitrary distor­
tion of a path therein. 

I t does not appear possible to deduce much of the 
5-matrix singularity structure from the physical uni­
tarity equations without introducing the unphysical 
unitarity relations and antiparticle theorems. Since 
the specification of these results must involve paths of 
continuation passing through regions where there may 
lie singularities we cannot yet deduce, a severe difficulty 
arises which is characteristic of ^-matrix theory rather 
than our particular method. 

In the circumstances, the obvious and apparently 
only thing to do is to try to set up an iteration procedure 
whereby one takes into account only those singularities 
whose discontinuities we can deduce and, having derived 
the fundamental theorems in this approximation, use 
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the theorems to generate more singularity structure, 
and repeat the process. The justification is to be self-
consistency within the "approximation" at each step be­
cause, if we do eventually obtain a self-consistent solu­
tion it must be a correct solution. 

Our results could be regarded as a first step in this 
direction. We have derived the fundamental theorems 
and in principle, all the normal threshold discontin­
uities in the step which takes only normal thresholds 
into account and are ready to use known methods6,7 

to deduce more singularity structure and repeat the 
process. So far we are encouraged by the fact that the 
method does seem to lead to self-consistent results within 
the normal threshold approximation and that it seems 
possible to proceed further in an unambiguous way. 

In general, a procedure whereby we ignore and later 
include singularities does not make mathematical sense 
because of ambiguities in sheet structure. That it should 
work in this particular case would require that the 
S matrix singularity structure should have some special 
properties which we shall refer to as the hierarchical 
structure.25 For example, it would seem that a path 
starting from a normal threshold singularity and looping 
some singularity other than a normal threshold must, 
on returning to its starting point find a new normal 
threshold on the new sheet. Such conclusions could be 
modified if we allowed a preferred sheet, the physical 
sheet. I t is interesting that these requirements appear 
to be related to those mentioned above. 

I t is unsatisfactory to make the hierarchical structure 
an extra assumption since it is probably not independent 
of the unitarity and analyticity assumptions. Admit­
tedly it is not clear either whether analyticity is inde­
pendent of unitarity. A satisfactory possibility is that 
the hierarchical structure can be proved at the start. 

Although one knows no details one knows that any 
given singularities of the 5 matrix must be generated 
by the unitarity equations in one of the three ways 
known: the change in form of the equations (which 
generates normal thresholds), the Stapp-Polkinghorne 
endpoint mechanism6'7 (other Landau singularities, 
pseudothresholds, second type), or by integral equation 
methods4,5,8>9 (unstable poles and cuts). This knowledge 
may be enough to deduce the desired information. If 

25 We do not wish to imply the meaning Polkinghorne (Ref. 6) 
gave to this phrase although there is probably a relation between 
the two usages. 

the hierarchical structure can be proved we obtain the 
important bonus that, since our method of construc­
tion seems unique, the solution so constructed is unique. 

Let us suppose these surmises are correct and look at 
later steps in the iteration scheme. Since we know all 
the individual normal threshold discontinuities we can 
generate further singularities6,7 and evaluate their dis­
continuities6 by known methods. Various clues26 have 
been found as to how the consistency requirements 
determine on which sheet the new, singularities must 
lie. We must show that the solution is consistent at 
each stage, e.g., different unitarity equations can gen­
erate a given singularity and its discontinuity and 
ought, for consistency, to yield the same result. We 
mentioned that this was so for normal thresholds and 
Mandelstam27 has verified this in the case of the square 
diagram. Since we appear to be reproducing a Landau 
singularity structure11 with Cutkosky rules12 for the 
discontinuities (but with the refinement that summation 
effects are automatically accounted for4) we can expect 
consistency in general because of the resemblance to 
perturbation theory which is consistent. Apart from 
these consistency requirements, questions of dynamical 
consistency may also enter which would determine the 
initial masses. 

I t is the opinion of the author that the results ob­
tained here are favorable to the possibility of building 
up a complete, unique, and consistent theory from uni­
tarity and analyticity postulates, but that the aim of 
further work must be to gain a deeper understanding 
of the analyticity assumption and of the hierarchical 
structure which seems to play a key role in unravelling 
the powerful consistency requirements of the S matrix. 

ACKNOWLEDGMENTS 

I would like to thank Professor G. F. Chew, Professor 
R. E. Cutkosky, and Dr. J. C. Taylor, my supervisor 
in Cambridge, for encouragement and help. I would 
like to thank Dr. I. T. Drummond, Dr. P. V. LandshofT, 
and especially Dr. J. Goldstone for interesting discus­
sions and Professor H. P. Stapp for helpful criticisms 
and suggestions. I would also like to thank the DSIR 
for a maintenance grant during my stay in Cambridge 
when most of this work was carried out. 

26 J. C. Polkinghorne, Phys. Rev. 128, 2898 (1962). 
27 S. Mandelstam, Phys. Rev. 112, 1349 (1958). 


